Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Front Hum Neurosci ; 6: 64, 2012.
Article En | MEDLINE | ID: mdl-22470331

Studies on the maturation of auditory motion processing in children have yielded inconsistent reports. The present study combines subjective and objective measurements to investigate how the auditory perceptual abilities of children change during development and whether these changes are paralleled by changes in the event-related brain potential (ERP). We employed the mismatch negativity (MMN) to determine maturational changes in the discrimination of interaural time differences (ITDs) that generate lateralized moving auditory percepts. MMNs were elicited in children, teenagers, and adults, using a small and a large ITD at stimulus offset with respect to each subject's discrimination threshold. In adults and teenagers large deviants elicited prominent MMNs, whereas small deviants at the behavioral threshold elicited only a marginal or no MMN. In contrast, pronounced MMNs for both deviant sizes were found in children. Behaviorally, however, most of the children showed higher discrimination thresholds than teens and adults. Although automatic ITD detection is functional, active discrimination is still limited in children. The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities. The study critically accounts for advanced understanding of children's central auditory development.

2.
Hear Res ; 268(1-2): 234-49, 2010 Sep 01.
Article En | MEDLINE | ID: mdl-20561574

The phase of low-frequency sinusoids is encoded in phase-coupled discharges of spherical bushy cells (SBCs) of the anteroventral cochlear nucleus and transmitted to the medial superior olive, where binaural input-coincidence is used for processing of sound source localization. SBCs are innervated by auditory nerve fibers through large, excitatory synapses (endbulbs of Held) and by inhibitory inputs, which effectively reduce SBC discharge rates. Here we monitor presynaptic potentials of endbulb-terminals and postsynaptic spikes of SBCs in extracellular single unit recordings in vivo. We compare postsynaptic phase-coupling of SBCs and their presynaptic immediate auditory nerve input. In all but one SBC discharge rates at the characteristic frequency were reduced pre-to-postsynaptically and phase-coupling accuracy was increased in one-third of them. We investigated the contribution of systemic inhibition on spike timing in SBCs by iontophoretic application of glycine- and GABA-receptor antagonists (strychnine, bicuculline). Discharge rate increased in one-third of the units during antagonist application, which was accompanied by a deterioration of phase-coupling accuracy in half of those units. These results suggest that the phase-coupling accuracy is improved in a subpopulation of SBCs during transmission from the auditory nerve to the SBCs by reduction of spike rates.


Auditory Pathways/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/physiology , Gerbillinae/physiology , Sound Localization , Synaptic Transmission , Acoustic Stimulation , Animals , Auditory Pathways/drug effects , Bicuculline/administration & dosage , Cochlear Nerve/drug effects , Cochlear Nucleus/cytology , Cochlear Nucleus/drug effects , GABA-A Receptor Antagonists/administration & dosage , Glycine Agents/administration & dosage , Iontophoresis , Strychnine/administration & dosage , Synaptic Potentials , Synaptic Transmission/drug effects , Time Factors
3.
J Assoc Res Otolaryngol ; 4(1): 1-23, 2003 Mar.
Article En | MEDLINE | ID: mdl-12098017

The medial nucleus of the trapezoid body (MNTB) plays an important role in the processing of interaural intensity differences, a feature that is critical for the localization of sound sources. It is generally believed that the MNTB functions primarily as a passive relay in converting excitatory input originating from the contralateral cochlear nucleus (CN) into an inhibitory input to the ipsilateral lateral superior olive. However, studies showing that the MNTB itself is also the target of inhibitory input suggest that the MNTB may serve more than a sign-converting function. To examine the fidelity of signal transmission at the CN-MNTB synapse, presynaptic calyceal potentials ("prepotentials"), reflecting the excitatory input to the MNTB neuron, and postsynaptic action potentials were simultaneously monitored with the same electrode during in vivo extracellular recordings from the gerbil's MNTB. Presynaptic activity differed from postsynaptic activity in several respects: (1) Spontaneous and sound-evoked discharge rates were greater presynaptically than postsynaptically. (2) Frequency tuning was sharper postsynaptically than presynaptically. (3) Calyceal terminals and MNTB neurons both showed phasic-tonic response patterns to tonal stimulation, but the duration of the onset response and the level of the tonic component were reduced postsynaptically. (4) Phase-locking to sound frequencies up to 1 kHz was greater postsynaptically than presynaptically. (5) The rate-intensity characteristics of pre- and postsynaptic activities differed significantly from each other in half of the MNTB neurons. To test the hypothesis that acoustically evoked inhibition of MNTB neurons contributed to the relatively lower levels of postsynaptic discharge, two-tone stimulation was applied, wherein the response to one tone-burst, set at the neuron's characteristic frequency, can be reduced by addition of a second "inhibitory" tone. The inhibitory tone caused a much larger reduction in post- than in presynaptic activity, indicating an acoustically evoked inhibitory influence directly on MNTB units. These findings show that transmission at the CN-MNTB synapse does not occur in a fixed one-to-one manner and that the response of MNTB neurons reflects the integration of their excitatory and inhibitory inputs.


Action Potentials/physiology , Cochlear Nucleus/physiology , Synapses/physiology , Animals , Brain Stem/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Gerbillinae , Olivary Nucleus/physiology , Regression Analysis
4.
J Neurosci ; 22(24): 11004-18, 2002 Dec 15.
Article En | MEDLINE | ID: mdl-12486196

Spherical bushy cells (SBCs) of the anteroventral cochlear nucleus (AVCN) receive their main excitatory input from auditory nerve fibers (ANFs) through large synapses, endbulbs of Held. These cells are also the target of inhibitory inputs whose function is not well understood. The present study examines the role of inhibition in the encoding of low-frequency sounds in the gerbil's AVCN. The presynaptic action potentials of endbulb terminals and postsynaptic action potentials of SBCs were monitored simultaneously in extracellular single-unit recordings in vivo. An input-output analysis of presynaptic and postsynaptic activity was performed for both spontaneous and acoustically driven activity. Two-tone stimulation and neuropharmacological experiments allowed the effects of neuronal inhibition and cochlear suppression on SBC activity to be distinguished. Ninety-one percent of SBCs showed significant neuronal inhibition. Inhibitory sidebands enclosed the high- or low-frequency, or both, sides of the excitatory areas of these units; this was reflected as a presynaptic to postsynaptic increase in frequency selectivity of up to one octave. Inhibition also affected the level-dependent responses at the characteristic frequency. Although in all units the presynaptic recordings showed monotonic rate-level functions, this was the case in only half of the postsynaptic recordings. In the other half of SBCs, postsynaptic inhibitory areas overlapped the excitatory areas, resulting in nonmonotonic rate-level functions. The results demonstrate that the sound-evoked spike activity of SBCs reflects the integration of acoustically driven excitatory and inhibitory input. The inhibition specifically affects the processing of the spectral, temporal, and intensity cues of acoustic signals.


Auditory Pathways , Cochlear Nucleus/physiology , Neural Inhibition , Presynaptic Terminals/physiology , Synaptic Transmission , Acoustic Stimulation , Animals , Cochlear Nucleus/cytology , Evoked Potentials, Auditory , Excitatory Postsynaptic Potentials , Gerbillinae , Neurons/physiology , Presynaptic Terminals/ultrastructure
5.
Hear Res ; 172(1-2): 18-36, 2002 Oct.
Article En | MEDLINE | ID: mdl-12361864

The superior paraolivary nucleus (SPN) of the superior olivary complex (SOC) though morphologically well described, has not been characterized physiologically. Here we report the basic response properties of SPN units acquired with extracellular recording techniques under monaural acoustic stimulation in the Mongolian gerbil. Poststimulus-time histograms corresponded to those described earlier for the cat's cochlear nucleus (onset, chopper, primary-like), and partly to those previously acquired in other SOC nuclei (tonic, off/rebound). Two-thirds of the units responded solely to contralateral stimulation (40% excitatory [E], 19% inhibitory [I], 6% mixed [EI]). Most of the remainder responded equally to stimulation from either ear (18% I.I, 9% E.E). Overall, the monaural contralateral input was more effective than the ipsilateral and bilateral input. Characteristic frequencies and response areas covered the entire hearing range of the gerbil and the units mostly showed broad frequency-tuning. In combination, these properties suggest that the SPN might be a constituent of an afferent pathway encoding stimulus features across broad frequency ranges.


Gerbillinae/physiology , Olivary Nucleus/physiology , Acoustic Stimulation , Animals , Auditory Pathways/anatomy & histology , Auditory Pathways/physiology , Cats , Electrophysiology , Evoked Potentials, Auditory , Gerbillinae/anatomy & histology , Olivary Nucleus/anatomy & histology , Species Specificity
...